GPS Carrier-Phase Multipath Model Validation

Quarterly Review of the NASA/FAA Joint University Program for Air Transportation Research

Friday, June 20, 2003

Sai K. Kalyanaraman Dr. Michael S. Braasch

Avionics Engineering Center

Ohio University, Athens, Ohio

Project Sponsor: NASA/FAA Joint University Program

Motivation

- Multipath is the dominant error source in high-precision (i.e., differential carrier-phase) applications of GPS
- Theoretical models of GPS pseudorange error due to multipath have been validated
- Prior to this effort, carrier-phase multipath models have received scant attention
- Prior efforts have completely ignored the effect of code tracking architecture

Objective

- Validate carrier-phase multipath theory
 - Validation of the currently published theoretical models against bench data
- Compare carrier-phase multipath errors between standard and narrow correlators
- Compare effects of coherent and non-coherent code tracking on carrier-phase multipath errors

Outline

- Characterization of carrier-phase multipath
- Bench data collection setup
- Data analysis and validation
- Coherent versus Non-coherent code tracking
- Summary

Characterization of Carrier-phase Multipath

- Multipath parameters:
 - Amplitude
 - Delay
 - Phase
 - Phase-rate

Carrier-phase Multipath

Carrier-phase multipath error:
$$\theta_c = \arctan\left(\frac{M_Q}{D + M_I}\right)$$

$$\theta_c = \arctan\left(\frac{\alpha R(\tau_c - \delta)\sin(\theta_m)}{R(\tau_c) + \alpha R(\tau_c - \delta)\cos(\theta_m)}\right)$$

Parameters Under Consideration

- Non-coherent and Coherent code tracking
- Standard Correlator, 1.0 chip Early-Late spacing
 - Strong multipath M/D = -2dB
 - Weak multipath M/D = -10dB
- Narrow Correlator, 0.1 chip Early-Late spacing
 - Strong multipath M/D = -2dB
 - Weak multipath M/D = -10dB

Standard vs. Narrow Correlator; Non-coherent Code Tracking, M/D = -2dB

Standard vs. Narrow Correlator, Non-coherent code tracking, M/D = -10dB

Simplified Models for Carrier-Phase Multipath Error

 Maximum carrier-phase multipath error occurs when the multipath is orthogonal to the composite signal.

$$\theta_c = \arcsin\left(\frac{\alpha R(\tau_c - \delta)}{R(\tau_c)}\right)$$

• The above equation is difficult to implement in a simulation.

Simplified Models (continued)

- The orthogonal projection of the multipath component onto the composite is zero. Hence, for coherent code tracking, the code tracking error is negligible.
- The next model makes an assumption that the codetracking error is negligible and further simplifies the previous model.

$$\theta_c = \arcsin(\alpha R(\delta))$$

 However, it is possible to implement this simplified model.

Assumption:

$$\theta_c = \arcsin(\alpha R(\delta))$$

Bench-Test Setup

- GPS Hardware Signal Generator
 - Spirent/Nortel STR 2760
- Receiver
 - NovAtel OEM3 GPS Receiver with different software loads to implement standard and narrow correlators
- Two satellites simulated: one with multipath, one without; all other error sources (except noise) set to zero
- Differential processing to obtain multipath error

Data Analysis and Validation

- Data collected during the bench tests with standard and narrow correlator spacing was used to validate the theoretical multipath error envelopes.
- Comparison of bench test data with the theoretically obtained error envelopes was performed for M/D's of 2dB and –10dB.
- This attempts to capture the variations in the error envelopes between strong and weak multipath.

Standard correlator, Non-coherent code tracking. (Bench test data versus simulation results) M/D = -2dB

Standard correlator, Non-coherent code tracking. (Bench test data versus simulation results) M/D = -10 dB

Narrow correlator, Non-coherent code tracking. (Bench test data versus simulation results) M/D = -2dB

Narrow correlator, Non-coherent code tracking. (Bench test data versus simulation results) M/D = -10dB

Effects of Coherent versus non-coherent code tracking on carrier-phase multipath error envelopes

- This validation of the carrier-phase multipath theory applies to the non-coherent code tracking mode.
- However, this section draws a comparison between the theoretical carrier-phase multipath error envelopes obtained for the non-coherent and coherent code tracking modes
- The standard and the wide correlator spacing architectures are compared for strong and weak multipath scenarios

Standard correlator spacing, M/D = -2dB

Carrier-phase multipath error envelopes, (M/D = -2dB)0.03 Carrier-phase error in meters 0.02 Non-Coherent Coherent 0.01 -0.01 -0.02-0.03 <u></u> 1.5 0.5 Delay in chips

Narrow correlator spacing, M/D = -2dB

Carrier-phase multipath error envelopes, (M/D = -2dB)

Standard correlator spacing, M/D = -10dB

Carrier-phase multipath error envelopes, (M/D = -10dB)0.01 Carrier-phase error in meters Non-Coherent Coherent 0.005 0.005 -0.01 <u>-</u> 0.5 1.5 Delay in chips

Narrow correlator spacing, M/D = -10dB

Carrier-phase multipath error envelopes, (M/D = -10dB)

Summary

- Theoretical carrier-phase multipath error envelopes have been validated for non-coherent code-tracking receivers
- Limitations in simplified models have been analyzed
- For carrier-phase multipath, narrow-correlator receivers significantly outperform standard correlators at high M/D
- Theory indicates additional carrier-phase multipath error envelope reduction for coherent code-trackers

